Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20232674

ABSTRACT

Ultraviolet C (UVC) devices are an effective means of disinfecting surfaces and protecting medical tools against various microbes, including coronavirus. Overexposure to UVC can induce oxidative stress, damage the genetic material, and harm biological systems. This study investigated the prophylactic efficacy of vitamin C and B12 against hepatotoxicity in UVC-intoxicated rats. Rats were irradiated with UVC (725.76, 967.68, and 1048.36 J/cm2) for 2 weeks. The rats were pretreated with the aforementioned antioxidants for two months before UVC irradiation. The prophylactic effect of vitamins against UVC hepatotoxicity was evaluated by monitoring the alteration of liver enzyme activities, antioxidant status, apoptotic and inflammatory markers, DNA fragmentation, and histological and ultrastructural alterations. Rats exposed to UVC showed a significant increase in liver enzymes, oxidant-antioxidant balance disruption, and increased hepatic inflammatory markers (TNF-α, IL-1ß, iNOS, and IDO-1). Additionally, obvious over-expression of activated caspase-3 protein and DNA fragmentation were detected. Histological and ultrastructural examinations verified the biochemical findings. Co-treatment with vitamins ameliorated the deviated parameters to variable degrees. In conclusion, vitamin C could alleviate UVC-induced hepatotoxicity more than vitamin B12 by diminishing oxidative stress, inflammation, and DNA damage. This study could provide a reference for the clinical practice of vitamin C and B12 as radioprotective for workers in UVC disinfectant areas.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Vitamin B 12/metabolism , Vitamins/pharmacology , Oxidative Stress , Vitamin A/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Liver
2.
Int J Mol Sci ; 24(9)2023 May 06.
Article in English | MEDLINE | ID: covidwho-2320574

ABSTRACT

Extracellular collagen remodeling is one of the central mechanisms responsible for the structural and compositional coherence of myocardium in patients undergoing myocardial infarction (MI). Activated primary cardiac fibroblasts following myocardial infarction are extensively investigated to establish anti-fibrotic therapies to improve left ventricular remodeling. To systematically assess vitamin C functions as a potential modulator involved in collagen fibrillogenesis in an in vitro model mimicking heart tissue healing after MI. Mouse primary cardiac fibroblasts were isolated from wild-type C57BL/6 mice and cultured under normal and profibrotic (hypoxic + transforming growth factor beta 1) conditions on freshly prepared coatings mimicking extracellular matrix (ECM) remodeling during healing after an MI. At 10 µg/mL, vitamin C reprogramed the respiratory mitochondrial metabolism, which is effectively associated with a more increased accumulation of intracellular reactive oxygen species (iROS) than the number of those generated by mitochondrial reactive oxygen species (mROS). The mRNA/protein expression of subtypes I, III collagen, and fibroblasts differentiations markers were upregulated over time, particularly in the presence of vitamin C. The collagen substrate potentiated the modulator role of vitamin C in reinforcing the structure of types I and III collagen synthesis by reducing collagen V expression in a timely manner, which is important in the initiation of fibrillogenesis. Altogether, our study evidenced the synergistic function of vitamin C at an optimum dose on maintaining the equilibrium functionality of radical scavenger and gene transcription, which are important in the initial phases after healing after an MI, while modulating the synthesis of de novo collagen fibrils, which is important in the final stage of tissue healing.


Subject(s)
Ascorbic Acid , Myocardial Infarction , Mice , Animals , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardium/metabolism , Collagen/metabolism , Fibroblasts/metabolism , Vitamins/metabolism , Ventricular Remodeling/physiology
3.
EMBO Rep ; 24(4): e56374, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2289238

ABSTRACT

ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Ascorbic Acid/pharmacology
4.
Vasc Health Risk Manag ; 19: 139-144, 2023.
Article in English | MEDLINE | ID: covidwho-2262714

ABSTRACT

Introduction: Ascorbic acid and calcitriol were frequently utilized in conjunction as therapy during the COVID-19 pandemic, and individuals with minor symptoms had notable improvements. There have been a few studies, often with conflicting findings, that examine the use of them for endothelium restoration and numerous clinical trial studies that failed to establish the efficacy. The aim of this study was to find the efficacy of ascorbic acid compared to calcitriol on the inflammatory markers monocyte chemoattractant protein-1 (MCP-1), nitric oxide (NO), and superoxide dismutase (SOD), as protective agents which play an important role in the early stages of atherosclerosis formation. This study was an experimental in vivo study. Methods: The total of 24 male Rattus norvegicus strain Wistar rats were divided into 4 groups, namely: control/normal group (N), atherosclerosis group (DL) given atherogenic diet, atherosclerosis group given atherogenic diet and ascorbic acid (DLC), and atherosclerosis group given atherogenic diet and calcitriol (DLD) treatment for 30 days. Results: Ascorbic acid and calcitriol treatment was significantly effective (P<0.05) in lowering expression of MCP-1 and increasing NO and SOD level. Calcitriol was superior to ascorbic acid in increasing SOD (P<0.05). There was no significant difference between ascorbic acid and calcitriol in decreasing MCP-1 and increasing NO (P>0.05). Discussion: Both treatments could reduce MCP-1, and increase NO and SOD by increasing antioxidants. In this study calcitriol was superior to ascorbic acid in increasing SOD, but not NO and decreasing MCP-1. According to the theory, it was found that calcitriol through nuclear factor erythroid 2-related factor 2 (Nrf2) causes a direct increase in the amount of SOD. Nrf2 is an emerging regulator of cellular resistance to oxidants. Conclusion: Ascorbic acid and calcitriol treatment was able to reduce MCP-1 and increase NO and SOD in atherosclerosis rat. Calcitriol was significantly superior in increasing SOD levels compared to ascorbic acid.


Subject(s)
Ascorbic Acid , Atherosclerosis , Calcitriol , Animals , Male , Rats , Ascorbic Acid/pharmacology , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Calcitriol/pharmacology , Chemokine CCL2/metabolism , NF-E2-Related Factor 2/metabolism , Nitric Oxide , Oxidative Stress , Rats, Wistar , Superoxide Dismutase
5.
Front Biosci (Landmark Ed) ; 28(1): 8, 2023 01 13.
Article in English | MEDLINE | ID: covidwho-2229632

ABSTRACT

BACKGROUND: Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drug design. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst the many disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potential in vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. METHODS: The Mpro inhibition assay was developed by cloning, expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. RESULTS: L-arginine was found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral action against Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C were potential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVID patients. CONCLUSIONS: The findings of the current study are important because they help to identify COVID-19 treatments that are efficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategy for COVID-19 that could be used in conjunction with pharmacological agents.


Subject(s)
Arginine , Ascorbic Acid , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , Arginine/pharmacology , Ascorbic Acid/pharmacology , COVID-19 , Dietary Supplements , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
6.
Cells ; 11(20)2022 10 21.
Article in English | MEDLINE | ID: covidwho-2082060

ABSTRACT

The binding of SARS-CoV-2 spikes to the cell receptor angiotensin-converting enzyme 2 (ACE2) is a crucial target both in the prevention and in the therapy of COVID-19. We explored the involvement of oxidoreductive mechanisms by investigating the effects of oxidants and antioxidants on virus uptake by ACE2-expressing cells of human origin (ACE2-HEK293). The cell uptake of pseudoviruses carrying the envelope of either Delta or Omicron variants of SARS-CoV-2 was evaluated by means of a cytofluorimetric approach. The thiol N-acetyl-L-cysteine (NAC) inhibited the uptake of both variants in a reproducible and dose-dependent fashion. Ascorbic acid showed modest effects. In contrast, neither hydrogen peroxide (H2O2) nor a system-generating reactive oxygen species (ROS), which play an important role in the intracellular alterations produced by SARS-CoV-2, were able to affect the ability of either Delta or Omicron SARS-CoV-2 pseudoviruses to be internalized into ACE2-expressing cells. In addition, neither H2O2 nor the ROS generating system interfered with the ability of NAC to inhibit that mechanism. Moreover, based on previous studies, a preventive pharmacological approach with NAC would have the advantage of decreasing the risk of developing COVID-19, irrespective of its variants, and at the same time other respiratory viral infections and associated comorbidities.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Acetylcysteine/pharmacology , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species , Antioxidants/pharmacology , HEK293 Cells , Peptidyl-Dipeptidase A/metabolism , Ascorbic Acid/pharmacology , Oxidants/pharmacology , Sulfhydryl Compounds/pharmacology
8.
In Vivo ; 36(5): 2116-2125, 2022.
Article in English | MEDLINE | ID: covidwho-2030531

ABSTRACT

BACKGROUND/AIM: Rapid spread of COVID-19 resulted in the revision of the value of ultraviolet C (UVC) sterilization in working spaces. This study aimed at investigating the UVC sensitivity of eighteen malignant and nonmalignant cell lines, the protective activity of sodium ascorbate against UVC, and whether Dectin-2 is involved in UVC sensitivity. MATERIALS AND METHODS: Various cell lines were exposed to UVC for 3 min, and cell viability was determined using the MTT assay. Anti-UV activity was determined as the ratio of 50% cytotoxic concentration (determined with unirradiated cells) to 50% effective concentration (that restored half of the UV-induced loss of viability). Dectin-2 expression was quantified using flow cytometry. RESULTS: The use of culture medium rather than phosphate-buffered saline is recommended as irradiation solution, since several cells are easily detached during irradiation in phosphate-buffered saline. Oral squamous cell carcinoma cell lines showed the highest UV sensitivity, followed by neuroblastoma, glioblastoma, leukemia, melanoma, lung carcinoma cells, and normal oral and dermal fibroblasts. Human dermal fibroblasts were more resistant than melanoma cell lines; however, both expressed Dectin-2. Sodium ascorbate at micromolar concentrations eliminated the cytotoxicity of UVC in these cell lines. CONCLUSION: Normal cells are generally UVC-resistant compared to corresponding malignant cells, which have higher growth potential. Dectin-2 protein expression itself may not be determinant of UVC sensitivity.


Subject(s)
COVID-19 , Carcinoma, Squamous Cell , Melanoma , Mouth Neoplasms , Ascorbic Acid/pharmacology , Humans , Lectins, C-Type , Phosphates , Ultraviolet Rays
9.
Life Sci ; 306: 120812, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1936951

ABSTRACT

AIM: The chronic administration of vitamin C and E can differentially disrupt hepatic insulin molecular pathway in rats. Hence, this study evaluated their effects on lipogenesis in the liver and adipose tissue and investigated the possible involvement of microRNA (miR)-22/29a/27a in the induced impaired glucose tolerance. MAIN METHODS: Wistar rats were orally supplemented with vitamin C (100, 200, and 500 mg/kg) or vitamin E (50, 100, and 200 mg/kg) for eight months. KEY FINDINGS: Vitamin C or E at the highest doses significantly altered liver weight and index, serum and hepatic lipids, adiponectin, and liver enzymes; besides their reported unfavorable effect on glucose homeostasis. Vitamin C and E negatively affected peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), sterol regulatory element-binding protein (SREBP)-1c/-2, miR-22/29a/27a expression, and adipose perilipin 1 to different extents, effects that were supported by the histopathological examination. SIGNIFICANCE: The current study provides a deeper insight into the findings of our previous study and highlights the detrimental effects of chronic vitamins supplementation on lipid metabolism. Overall, these findings emphasize the damage caused by the mindless use of supplements and reinforce the role of strict medical monitoring, particularly during the new COVID-19 era during which numerous commercial supplements are claiming to improve immunity.


Subject(s)
COVID-19 , Diabetes Mellitus , MicroRNAs , Adipose Tissue/metabolism , Animals , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , Ascorbic Acid/pharmacology , Diabetes Mellitus/metabolism , Dietary Supplements/adverse effects , Lipid Metabolism , Liver/metabolism , MicroRNAs/metabolism , Rats , Rats, Wistar , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Vitamin E/administration & dosage , Vitamin E/adverse effects , Vitamins/administration & dosage , Vitamins/adverse effects , Vitamins/pharmacology
10.
Int J Mol Sci ; 23(7)2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1785729

ABSTRACT

The development of affordable, effective, and environmentally friendly barrier fabrics is a current goal in antimicrobial textile development. The discovery of new routes to achieve non-toxic naturally occurring molecules with antimicrobial activity is of interest in the development of materials that promote wound healing, improve hygiene, and offer protection against nosocomial infection. Highly cleaned and sterile unbleached cotton has constituents that produce hydrogen peroxide at levels commensurate with those that favor cell signaling in wound healing. Here, we show the antimicrobial and antiviral properties of spunlaced griege cotton-containing nonwovens treated with ascorbic acid formulations. The mechanism of action occurs through the promotion of enhanced hydrogen peroxide activity. The levels of hydrogen peroxide activity afford antimicrobial activity against Gram-negative and Gram-positive bacteria and antiviral activity against MS2 bacteriophages. Spun-bond nonwoven unbleached cotton was treated with ascorbic acid using traditional pad-dry-cure methods. An assessment of antibacterial and antiviral activity against Staphylococcus aureus, Klebsiella pneumoniae, and MS2 bacteriophages with the AATCC 100 test method showed a 99.99% inhibitory activity. An approach to the covalent attachment of ascorbic to cellulose through citric acid crosslinking chemistry is also discussed. Thus, a simple, low-cost approach to antimicrobial and antiviral cotton-based nonwovens applicable to dressings, nosocomial barrier fabrics, and face masks can be adopted by combining ascorbic acid with spunlace greige cotton nonwoven fabrics.


Subject(s)
Anti-Infective Agents , Cotton Fiber , Adjuvants, Pharmaceutic , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antiviral Agents , Ascorbic Acid/pharmacology , Gossypium , Hydrogen Peroxide , Textiles
11.
Complement Ther Med ; 67: 102827, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1768027

ABSTRACT

OBJECTIVES: With the expansion of the internet, social media platforms have become a major source of medical information. However, medical information on online multimedia platforms is often inaccurate. In the current study, we evaluated the reliability, quality, and accuracy of the most viewed YouTube videos featuring the effects of vitamin C on COVID-19. METHODS: A search was conducted on YouTube on January 13, 2022, using the keywords ("ascorbic acid" OR "vitamin C" OR "sodium ascorbate" OR "L-ascorbic") AND ("coronavirus" OR "COVID 19" OR "COVID-19" OR "Corona" OR "COVID" OR "SARSCoV2"). We assessed the 50 most-viewed videos using a modified DISCERN scale (mDISCERN) and Global Quality Scale (GQS). Additionally, the accuracy of the information in each video was evaluated. RESULTS: Out of the 50 most-viewed videos featuring the effect of vitamin C on COVID-19, 54% were not reliable. Furthermore, 62% presented poor quality, and 74% were misleading or neither accurate nor misleading. The average mDISCERN and GQS scores of the 50 included videos were 2.2 ± 1.4 (≥ 3: highly reliable) and 2.2 ± 1.1 (2: generally poor), respectively. Although the videos were made by medical doctors, their reliability, quality, and accuracy were not significantly different from those displayed in other sources, including fitness channels, television or internet-based news or programs, consumers, company channels, product advertisements, or prepared by nurses. CONCLUSIONS: The reliability, quality, and accuracy of the 50 most-viewed videos on the effect of vitamin C on COVID-19 were not high. Video creators, especially medical doctors, should make an effort so that the videos present reliable content with high-quality and correct information is disseminated to people.


Subject(s)
COVID-19 Drug Treatment , Social Media , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Humans , Information Dissemination , Reproducibility of Results , Video Recording
12.
Libyan J Med ; 17(1): 2054111, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1752028

ABSTRACT

Vitamins (Vit) C and D are widely used as immunogenic supplements among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. The SAR-CoV-2 virus enters into the pulmonary endothelial cells through attachment to angiotensin converting enzyme 2 receptor (Ace2) and the proteolytic activity of Cathepsin L (Ctsl) and transmembrane serine protease 2 (Tmprss2) enzymes. This study aimed to determine the influence of Vit C and D on the mRNA expression of Ace2, Tmprss2, and Ctsl genes in the mouse lungs. Vitamins C and D were administrated to different groups of mice through intra-peritoneal route in doses equivalent to human for 30 days. Then, the mRNA expression of SARS-CoV-2 entry gene was analyzed using qRT-PCR. It is found that Vit D, but not C, upregulated significantly (P < 0.05) the mRNA expression of Ace2 by more than six folds, while downregulated the expression of Ctsl and Tmprss2 genes by 2.8 and 2.2 folds, respectively. It can be concluded from this study that Vit D alters the mRNA expression of Ace2, Tmprss, and Ctsl genes in the mouse lungs. This finding can help us in understanding, at least in part, the molecular influence of Vit D on genes involved in the entry of SARS-CoV-2 into the cells.


Subject(s)
COVID-19 , Serine Proteases , Angiotensin-Converting Enzyme 2 , Animals , Ascorbic Acid/metabolism , Ascorbic Acid/pharmacology , Cathepsin L/genetics , Cathepsin L/metabolism , Endothelial Cells , Humans , Lung/metabolism , Mice , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/metabolism , SARS-CoV-2 , Serine Proteases/metabolism , Vitamins
13.
Cardiovasc Hematol Disord Drug Targets ; 21(4): 235-242, 2021.
Article in English | MEDLINE | ID: covidwho-1573714

ABSTRACT

AIMS: The study aimed to assess the inhibitory effect of Vitamin C on angiotensin-converting enzyme 2. BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which uses angiotensin-converting enzyme 2 (ACE-II) as the first route to infect human cells. Accordingly, agents with potential inhibition of ACE-II receptors might be effective in the prevention and management of COVID-19. OBJECTIVE: The goal of this work was to assess the possible inhibitory effect of ACE-II on ascorbic acid using an ex vivo approach based on the inhibition of diminazene-induced vasorelaxation. MATERIALS AND METHODS: In the present study, diminazene was used as a known specific inhibitor of ACE-II. Then, the vasorelaxant effect of ascorbic acid on diminazene-induced relaxation was examined using isolated aortic rings. All experiments of this study were evaluated on isolated aortic rings precontracted by epinephrine. RESULTS: The results confirmed that diminazene-induced vasorelaxation in a dose-dependent manner. More interestingly, ascorbic acid inhibited diminazene-induced vasorelaxation in a dose-dependent manner. CONCLUSION: This investigation provides valuable experimental proof of the efficacy of ascorbic acid (Vitamin C) on inhibiting ex vivo vascular angiotensin-converting enzyme II, which is known among the pharmacological targets of anti-COVID-19 drugs.


Subject(s)
Ascorbic Acid , COVID-19 , Angiotensin-Converting Enzyme 2 , Angiotensins , Animals , Ascorbic Acid/pharmacology , Humans , Rats , SARS-CoV-2
14.
Semin Respir Crit Care Med ; 42(5): 672-682, 2021 10.
Article in English | MEDLINE | ID: covidwho-1493295

ABSTRACT

While the use of vitamin C as a therapeutic agent has been investigated since the 1950s, there has been substantial recent interest in the role of vitamin C supplementation in critical illness and particularly, sepsis and septic shock. Humans cannot synthesize vitamin C and rely on exogenous intake to maintain a plasma concentration of approximately 70 to 80 µmol/L. Vitamin C, in healthy humans, is involved with antioxidant function, wound healing, endothelial function, and catecholamine synthesis. Its function in the human body informs the theoretical basis for why vitamin C supplementation may be beneficial in sepsis/septic shock.Critically ill patients can be vitamin C deficient due to low dietary intake, increased metabolic demands, inefficient recycling of vitamin C metabolites, and loss due to renal replacement therapy. Intravenous supplementation is required to achieve supraphysiologic serum levels of vitamin C. While some clinical studies of intravenous vitamin C supplementation in sepsis have shown improvements in secondary outcome measures, none of the randomized clinical trials have shown differences between vitamin C supplementation and standard of care and/or placebo in the primary outcome measures of the trials. There are some ongoing studies of high-dose vitamin C administration in patients with sepsis and coronavirus disease 2019; the majority of evidence so far does not support the routine supplementation of vitamin C in patients with sepsis or septic shock.


Subject(s)
Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Shock, Septic/drug therapy , Vitamins/pharmacology , Vitamins/therapeutic use , Animals , Antioxidants/pharmacology , Ascorbic Acid/administration & dosage , Ascorbic Acid/adverse effects , Ascorbic Acid Deficiency/physiopathology , Clinical Trials as Topic , Critical Illness , Dose-Response Relationship, Drug , Glucocorticoids/pharmacology , Humans , Inflammation Mediators/metabolism , Vasoconstrictor Agents/pharmacology , Vitamins/administration & dosage , Vitamins/adverse effects
15.
Nutrients ; 13(10)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1477977

ABSTRACT

BACKGROUND: Vitamin C is a water-soluble antioxidant vitamin. Oxidative stress and its markers, along with inflammatory markers, are high during critical illness. Due to conflicting results of the published literature regarding the efficacy of vitamin C in critically ill patients, and especially the concerns for nephrotoxicity raised by some case reports, this meta-analysis was carried out to appraise the evidence and affirmation regarding the role of vitamin C in critically ill patients. METHODS: We searched the database thoroughly to collect relevant studies that assessed intravenous vitamin C use in critically ill patients published until 25 February 2021. We included randomized controlled trials and observational studies with 20 or more critically ill patients who have received intravenous ascorbic acid (vitamin C). After screening 18,312 studies from different databases, 53 were included in our narrative synthesis, and 48 were included in the meta-analysis. We used the Covidence software for screening of the retrieved literature. Review Manager (RevMan) 5.4 was used for the pooling of data and Odds Ratios (OR) and Mean difference (MD) as measures of effects with a 95% confidence interval to assess for explanatory variables. RESULTS: Pooling data from 33 studies for overall hospital mortality outcomes using a random-effect model showed a 19% reduction in odds of mortality among the vitamin C group (OR, 0.81; 95% CI, 0.66-0.98). Length of hospital stay (LOS), mortality at 28/30 days, ICU mortality, new-onset AKI and Renal Replacement Therapy (RRT) for AKI did not differ significantly across the two groups. Analysis of data from 30 studies reporting ICU stay disclosed 0.76 fewer ICU days in the vitamin C group than the placebo/standard of care (SOC) group (95% CI, -1.34 to -0.19). This significance for shortening ICU stay persisted even when considering RCTs only in the analysis (MD, -0.70; 95% CI, -1.39 to -0.02). CONCLUSION: Treatment of critically ill patients with intravenous vitamin C was relatively safe with no significant difference in adverse renal events and decreased in-hospital mortality. The use of vitamin C showed a significant reduction in the length of ICU stays in critically ill patients.


Subject(s)
Ascorbic Acid/pharmacology , Critical Illness , Acute Kidney Injury/therapy , Clinical Trials as Topic , Critical Illness/mortality , Hospital Mortality , Humans , Intensive Care Units , Length of Stay , Renal Replacement Therapy
16.
Pharmacol Res ; 169: 105665, 2021 07.
Article in English | MEDLINE | ID: covidwho-1433725

ABSTRACT

Previous studies have reported that vitamin C supplementation may decrease lipid profile in patients with type 2 diabetes mellitus (T2DM). This systematic review and meta-analysis evaluated the influence of vitamin C supplementation on lipid profile in patients with T2DM. Studies examining the effects of vitamin C supplementation on lipid profile in patients with T2DM, published up to November 2020, were identified through PubMed, SCOPUS, and Embase databases. 15 studies, including 872 participants, were included and analyzed using a random-effects model to calculate weighted mean differences (WMDs) with 95% confidence intervals (CI). Findings from 15 studies indicated that vitamin C supplementation significantly decreased Triglyceride (TG) (WMD: -16.48 mg/dl, 95% CI (-31.89, -1.08), P < 0.001) and total cholesterol (TC) (WMD: -13.00 mg/dl, 95% CI (-23.10, -2.91), P < 0.001) in patients with T2DM. However, vitamin C supplementation failed to improve LDL and HDL. The meta-regression analysis suggested that lipid profile improvement was affected by duration of vitamin C treatment. Dose-response analysis showed that vitamin C supplementation changed LDL significantly based on vitamin C dose. According to our findings, vitamin C supplementation significantly improved lipid profile via decreases in TG and TC. However, vitamin C failed to affect LDL and HDL in diabetic populations. It appears that vitamin C supplementation is more beneficial to lipid profile in long-term vs. short term interventions.


Subject(s)
Ascorbic Acid/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Lipids/blood , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Dietary Supplements , Dose-Response Relationship, Drug , Humans , Lipid Metabolism/drug effects
17.
FASEB J ; 35(6): e21651, 2021 06.
Article in English | MEDLINE | ID: covidwho-1388031

ABSTRACT

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Subject(s)
Acetylcysteine/analogs & derivatives , Amides/pharmacology , Ascorbic Acid/pharmacology , Auranofin/pharmacology , COVID-19 Drug Treatment , COVID-19 , Disulfides/metabolism , Esters/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds/pharmacology , Virus Internalization/drug effects , Acetylcysteine/pharmacology , COVID-19/metabolism , COVID-19/pathology , HEK293 Cells , Humans
18.
Nutrients ; 13(4)2021 Mar 27.
Article in English | MEDLINE | ID: covidwho-1383900

ABSTRACT

Vitamin C (ascorbic acid) is a normal liver metabolite in most animals, with humans being a notable exception due to random genetic mutations that have occurred during our evolution [...].


Subject(s)
Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Ascorbic Acid/pharmacokinetics , Bacterial Infections/drug therapy , COVID-19/virology , Epigenesis, Genetic , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Sepsis/drug therapy , COVID-19 Drug Treatment
19.
Biomed Pharmacother ; 142: 111956, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330661

ABSTRACT

Novel coronavirus 2019 (COVID-19) is a zoonosis that revised the global economic and societal progress since early 2020. The SARS-CoV-2 has been recognized as the responsible pathogen for COVID-19 with high infection and mortality rate potential. It has spread in 192 countries and infected about 1.5% of the world population, and still, a proper therapeutic approach is not unveiled. COVID-19 indication starts with fever to shortness of breathing, leading to ICU admission with the ventilation support in severe conditions. Besides the symptomatic mainstay clinical therapeutic approach, only Remdesivir has been approved by the FDA. Several pharmaceutical companies claimed different vaccines with exceptionally high efficacy (90-95%) against COVID-19; how long these vaccines can protect and long-term safety with the new variants are unpredictable. After the worldwide spread of the COVID-19 pandemic, numerous clinical trials with different phases are being performed to find the most appropriate solution to this condition. Some of these trials with old FDA-approved drugs showed promising results. In this review, we have precisely compiled the efforts to curb the disease and discussed the clinical findings of Ivermectin, Doxycycline, Vitamin-D, Vitamin-C, Zinc, and cannabidiol and their combinations. Additionally, the correlation of these molecules on the prophylactic and diseased ministration against COVID-19 has been explored.


Subject(s)
COVID-19 Drug Treatment , Cannabidiol/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacology , Ascorbic Acid/pharmacology , COVID-19/epidemiology , COVID-19/prevention & control , Dietary Supplements , Doxycycline/pharmacology , Drug Repositioning/methods , Drug Therapy, Combination/methods , Humans , Ivermectin , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , Treatment Outcome , Vitamin D/pharmacology , Zinc/pharmacology
20.
Biomed Pharmacother ; 141: 111823, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1272313

ABSTRACT

Here, we demonstrate that the two distinct formulations of our anti-sepsis drug candidate Rejuveinix (RJX), have a very favorable safety profile in Wistar Albino rats at dose levels comparable to the projected clinical dose levels. 14-day treatment with RJX-P (RJX PPP.18.1051) or RJX-B (RJX-B200702-CLN) similarly elevated the day 15 tissue levels of the antioxidant enzyme superoxide dismutase (SOD) as well as ascorbic acid in both the lungs and liver in a dose-dependent fashion. The activity of SOD and ascorbic acid levels were significantly higher in tissues of RJX-P or RJX-B treated rats than vehicle-treated control rats (p < 0.0001). There was no statistically significant difference between tissue SOD activity or ascorbic acid levels of rats treated with RJX-P vs. rats treated with RJX-B (p > 0.05). The observed elevations of the SOD and ascorbic acid levels were transient and were no longer detectable on day 28 following a 14-day recovery period. These results demonstrate that RJX-P and RJX-B are bioequivalent relative to their pharmacodynamic effects on tissue SOD and ascorbic acid levels. Furthermore, both formulations showed profound protective activity in a mouse model of sepsis. In agreement with the PD evaluations in rats and their proposed mechanism of action, both RJX-P and RJX-B exhibited near-identical potent and dose-dependent anti-oxidant and anti-inflammatory activity in the LPS-GalN model of ARDS and multi-organ failure in mice.


Subject(s)
Ascorbic Acid/chemistry , Ascorbic Acid/therapeutic use , Magnesium Sulfate/chemistry , Magnesium Sulfate/therapeutic use , Niacinamide/chemistry , Niacinamide/therapeutic use , Pantothenic Acid/chemistry , Pantothenic Acid/therapeutic use , Pyridoxine/chemistry , Pyridoxine/therapeutic use , Riboflavin/chemistry , Riboflavin/therapeutic use , Sepsis/drug therapy , Sepsis/metabolism , Thiamine/chemistry , Thiamine/therapeutic use , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/therapeutic use , Ascorbic Acid/pharmacology , Dogs , Dose-Response Relationship, Drug , Drug Combinations , Drug Compounding , Female , Humans , Lipopolysaccharides/toxicity , Magnesium Sulfate/pharmacology , Male , Mice , Mice, Inbred BALB C , Niacinamide/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pantothenic Acid/pharmacology , Pyridoxine/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Riboflavin/pharmacology , Sepsis/pathology , Superoxide Dismutase/metabolism , Thiamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL